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This paper deals with a group theoretic approach to the finite element analysis of linear
free vibrations of shells with dihedral symmetry. Examples of such shell structures are
cylindrical shells, conical shells, shells with circumferential stiffeners, corrugated shells,
spherical shells, etc. The group theoretic approach is used to exploit the inherent symmetry
in the problem. For vibration analysis, the group theoretic results give the correct
symmetry-adapted basis for the displacement field. The stiffness matrix K and the mass
matrix M are identically block diagonalized in this basis. The generalized linear eigenvalue
problem of free vibration gets split into independent subproblems due to this block
diagonalization. The Simo element is used in the finite element formulation of the shell
equilibrium equations. Numerical results for natural frequencies and natural modes of
vibration of several dihedral shell structures are presented. The results are shown to be in
very good agreement with those reported in the literature. The computational advantages
and physical insights due to the group theoretic approach are also discussed.

# 2002 Elsevier Science Ltd.
1. INTRODUCTION AND OVERVIEW

The problem of determining the values of natural frequencies and the corresponding mode
shapes of structures is of much importance to engineers. The linear free vibration analysis
is required for the determination of steady state response, the determination of transient
response to forced vibration and is a prerequisite for the non-linear free vibration analysis.
On the amplitude–frequency graph, the non-linear resonance backbone curves branch off
at the linear natural frequencies.

In this paper, we deal with the group theoretic approach to the finite element analysis of
linear free vibrations of shell structures with dihedral symmetry (i.e., the symmetry of a
regular polygon). Many shells structures, analyzed separately in the literature, fall into this
class. Examples of reported literature are results on cylindrical and conical shells
extensively reviewed by Leissa [1] and Soedel [2], spherical shells with and without cutouts
discussed in Niordson [3], shells with circumferential stiffeners reviewed by Soedel [2], etc.
The common feature in all these shells is the dihedral symmetry and this is optimally
exploited by the group theoretic approach.

The finite element analysis enables the implementation of general shell theories and thus
an analysis of all kinds of shell structures with different boundary conditions (not always
tractable by analytical methods). However, convergence requirements force the
discretization to be so fine that the problem size usually ends up being huge
ð� 20 000� 20 000Þ. The group theoretic approach enables an efficient solution procedure
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd.
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for these large-size problems. In particular, shells with complex geometry but with
dihedral symmetry are amenable to efficient analysis due to group theory (see the last
example in section 4). This approach achieves even greater prominence in non-linear
analysis of shells (see references [4, 5]), where FEM analysis is indispensable. The analysis
carried out in this work is the first step in the general (geometrically) non-linear vibration
analysis of shells (to be reported in a future work).

Finding the natural frequencies of vibration of a shell using finite element discretization
reduces to the generalized linear eigenvalue problem (see reference [6])

KF ¼ o2MF; ð1Þ

where M is the n� n, symmetric, positive-semi-definite mass matrix, K is the n� n,
symmetric stiffness matrix, o is one of the natural frequencies and F the corresponding
mode shape. To exploit the symmetry of the shell, group representation theory can be used
to construct an n� n orthogonal matrix T such that

%KK ¼ TtKT and %MM ¼ TtMT ð2Þ

each have the same block diagonal form. Thus, the original eigenvalue problem is split
into independent subproblems. The analysis of free vibration of symmetric dihedral trusses
is discussed by Healey and Treacy [6]. Healey [7] and Wohlever and Healey [4] used a
group theoretic approach for non-linear bifurcation analysis of symmetric trusses and
shells of revolution under static loads. Essentially, the group theoretic approach leads to
the correct choice of the symmetry-adapted basis for the displacement vector field. The
algorithm to construct this basis for dihedral truss structures is given by Ikeda and Murota
[8]. This algorithm has been suitably modified and implemented for analysis of shells with
dihedral symmetry by Wohlever [5]. We discuss the main ideas in section 3 and refer the
reader to Wohlever [5] for detailed implementation notes.

The Simo element has been used in the finite element formulation of the shell
equilibrium equations. This is a numerical implementation of the classical Cosserat shell
theory. The implementation notes for this element are given in the papers by Simo et al.
[9–12]. In the Simo element, a point on the shell is located by the position vector of its
midsurface and a unit director vector along the material line (fibre). As opposed to most
FE shell models, which have five degrees of freedom (three displacements of the
midsurface and two rotations of the director), the Simo element has six degrees of freedom
(d.o.f.) for each node. This is the result of considering the director displacement as an
independent vector field. The director is thus extensible. Simo et al. [10] have used a mixed-
variational formulation to avoid the problems of membrane-locking and shear-locking. The
mixed-variational approach avoids the need to invoke procedures such as uniform or
reduced integration. Thus, the full 2� 2 Gauss integration is used and the element does
not suffer from the problem of spurious modes. The weak form of the equilibrium
equations are linearized exactly in the Simo element formulation. It is possible to work out
a closed-form expression of the discrete tangent operator. This is important in the context
of non-linear analysis, i.e., in the determination of the non-linear resonance curve which
we will discuss in a future work. Overall, the performance of the Simo element compares
well with the other state-of-the-art non-linear shell elements.

An outline of the remaining part of this paper is as follows. In section 2, we give a short
description of the finite element formulation using the Simo element. In section 3, we
discuss the relevant techniques of the group theoretic approach. In section 4, we present
the numerical results of the free vibration analysis of several dihedral shell structures.
These are shown to be in good agreement with the results reported in the literature. In
section 5, we discuss the computational cost analysis of the group theoretic approach with
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the help of CPU timings and floating point operations (flops) recorded during the
numerical simulations. In section 6, we conclude with a discussion on the computational
advantages and the physical insights due to the group theoretic approach.

The main goals of this work are: (1) to show that it is possible to carry out a free
vibration analysis of a large class of engineering shell structures efficiently and accurately
by a finite element analysis supplemented by group theoretic transformation routines; (2)
to show the computational advantages and parallel processing options due to a group
theoretic approach; and (3) to point out the physical insights provided by the role of
symmetry in understanding the linear free response of thin shell structures.

2. THE SIMO SHELL ELEMENT

The classical Cosserat non-linear shell theory has been discussed by many authors. The
important works are by Ericksen and Truesdell [13], Green and Laws [14], Green and
Zerna [15], Cohen and DeSilva [16], and Naghdi [17] since the original work of Cosserat
and Cosserat [18] in 1909. However, non-linear computational shell analysis has largely
been carried out by the so-called ‘‘degenerated solid’’ approach originally proposed by
Ahmed et al. [19]. This approach avoids the mathematical complexities associated with
classical shell theory. In a series of papers, Simo et al. [9–12], demonstrated that classical
shell theory that considers a shell as a single extensible director Cosserat surface lends itself
to an efficient numerical implementation which is free from mathematical complexities and
suitable for large-scale linear as well as non-linear computations.

We have used the Simo element for the finite element analysis of the shell equilibrium
equations. We discuss briefly the special features of the Simo shell element in this section
and refer the reader to the papers of Simo et al. [9–12] for details and implementation
notes.

The kinematic description of the shell for the Simo element is as follows. A material
point on the shell is parametrized by a co-ordinate system ðx1; x2; ZÞ 2 A�I, where
Z 2 I ¼ ½h�; hþ
 is the ‘‘through the thickness parameter’’ and A and I are fixed regions
in R2 and R respectively. The undeformed configuration S � R3 of the shell in Euclidean
space is a mapping F0 :A�I ! R3,

S :¼ fx0 2 R3 j x0 ¼ F0ðx1; x2; ZÞ 8ðx1; x2; ZÞ 2 A�Ig: ð3Þ

As shown in Figure 1, the material point x in any deformed configuration consistent with
the single director assumption is given by

x ¼ Fðx1; x2; ZÞ :¼ jðx1; x2Þ þ Z dðx1; x2Þ: ð4Þ

Here, j :A ! R3 defines the midsurface in S, and d :A ! R3 defines the director field
(or the thickness fibre). Thus, any deformed configuration C associated with the kinematic
assumption is given by

C :¼ fF ¼ ðj; dÞ :A ! R3 � R3 j d�½j;1 � j;20g: ð5Þ

Here, j;a denotes partial differentiation of j with respect to xa; a 2 f1; 2g. Any point in
the shell configuration is defined by its position j on the midsurface and a distance Z along
the director d. The condition d�½j;1 � j;2
 > 0 is required to prevent the possibility of
infinite transverse shear.

The details regarding the derivation of local balance laws, the weak form of the
equilibrium equations, the effective strain measures and the finite element implementation
notes of the solution procedure considered in the formulation are discussed by Simo et al.
[9–12]. The strain measures include terms that account for membrane, bending, transverse



Figure 1. The kinematic assumption of the extensible director Cosserat surface.
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shear, symmetric shear and the thickness stretch. In fact (see reference [12]), it can be
shown that these strain measures give those components of the Lagrangian strain tensor
from the three-dimensional theory, E,y which are either independent or linear in Z which is
the through-the-thickness parameter.

Simo et al. [11] have also described a simple linear elastic isotropic constitutive model
derived as per the standard procedures discussed by Green et al. [20]. The constitutive
relations are enforced through a mixed variational approach which employs a Hellinger–
Reissner functional (see reference [21]) for the membrane and thickness stretch fields and a
Hu–Washizu functional (see reference [22]) for the transverse shear fields. The combined
formulation effectively deals with the problems of membrane-locking and shear-locking and
prevents the occurrence of spurious energy modes.

The expressions for the material stiffness matrix ðKMÞ and the geometric stiffness matrix
ðKGÞ are given by Simo and Fox [12]. In this work, we deal with linear free vibrations only
and hence require only the material stiffness matrix evaluated at the reference
configuration, i.e., when all displacements are zero. The geometric stiffness matrix will
be required if one wishes to compute the non-linear free vibration resonance curve.

The expression for the consistent mass matrix for the linear problem is given by the
expression

M ¼
Z

%AA

%rr0N
ANB %jj0 dx1 dx2 þ

Z
%AA

%II0pN
ANB %jj0 dx1 dx2: ð6Þ

Here, NA and NB are standard isoparametric shape functions. As discussed in Simo et al.
[23], typical approximations for the reference inertia terms are %rr0 ¼ 2hr0 and
%II0p ¼ ð8h3=12Þr0, where r0 is the reference mass density and %jj0 is the midsurface Jacobian
in the reference configuration. In this approximation, the dependence of the three-
dimensional density on the through-the-thickness variable, Z, is neglected. The second
term in equation (6) accounts for rotational inertia.
yE ¼ 1=2ðFtF� IÞ, where F is the deformation gradient.
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3. THE GROUP THEORETIC APPROACH

The basic results of group theory that are used to obtain the result in equation (2) are
summarized in Appendix A. Group representation theory provides algorithms to compute
the orthogonal transformation matrix T. The algorithms for trusses with dihedral
symmetry are given by Ikeda and Murota [8]. These are easily adapted to the Simo
element. The only significant difference for the Simo shell element is that the symmetry
transformation must be applied twice per node, once for the displacement DOF of the
midsurface and once for the displacement DOF of the director as discussed by Wohlever
[5]. As mentioned earlier, the reader can refer to Wohlever [5] for detailed implementation
notes for obtaining the symmetry transformation matrices.

3.1. THE FINITE ELEMENT MESH

A typical element and a finite element mesh for a shell of revolution are shown in
Figure 2. The local node numbers 1–4 are used to locate the midsurface of the shell and
nodes 5–8 are used to locate the outer surface of the shell. Each node has three d.o.f.
Although this is an unusual way of defining a shell element, it is a convenient way to define
both the thickness of the shell and the initial orientations of the directors at the nodes. The
implementation of the Simo element appears three dimensional but the underlying
equations are strictly two dimensional. The details of the reduction of the three-
dimensional equilibrium equations to equilibrium equations on the midsurface via
integration through the thickness are given by Simo and Fox [9].

The FE mesh must be symmetric to obtain shell equilibrium equations with the required
symmetry. A mesh with the symmetry of the dihedral group, Dn, is achieved by m uniform
rings of n elements about the circumference with each element subtending an angle of 2p=n
radians at the centre. Thus, a typical mesh for a shell with dihedral symmetry consists of n
elements around the circumference and m� 1 elements down its length. For such a mesh,
the largest symmetry group which could be realized in the discrete FE equations would be
the dihedral group Dn. Consider the kth ring of this mesh ðk ¼ 1; 2; . . . ;mÞ. The
configuration space for a given ring ðVk

ringÞ is a 3� 2n ¼ 6n-dimensional vector space.
Therefore, the dimension of the complete displacement vector space is 6mn. The stiffness
matrix K and mass matrix M are assembled using a fixed XYZ cartesian coordinate system
for the displacements. Thus the matrices K and M 2 R6mn�6mn. The structures of a typical
stiffness and the corresponding mass matrix are shown in Figure 3.
Figure 2. The Simo element and a typical FEM dicretization of a shell.



Figure 3. Location of the non-zero entries in the assembled stiffness matrix K and the consistent mass matrix
M in the standard basis.
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3.2. THE STRUCTURE OF THE LINEAR TRANSFORMATION T

The similarity transformation by T (as per equation (2)) changes the basis of the
displacement vector field V into one in which the stiffness matrix K and mass matrix M are
block diagonalized. There are N mutually orthogonal subspaces Vj ; j ¼ f1; 2; . . . ;Ng,
where N is the number of inequivalent irreducible representations of the symmetry group
G. Thus, Vj � spanfejigði ¼ 1; 2; . . . ; cjÞ, where fejig is an orthonormal set of basis vectors
for the subspace Vj, such that

V ¼ V1 � V2 � � � � � VN : ð7Þ

This isotypic decomposition of the vector space V is unique. The dimensions of the
subspaces cj ¼ jVj j are also uniquely determined. It can be shown (see reference [8]) that
each one of the subspaces, Vj, reflects part of the symmetry of the original system. This
result leads to physical insights which are unique to the group theoretic approach. The
subspace V1 is typically designated as the G-invariant subspace which implies that the
elements of V1 reflect the symmetry of the complete group G. For example, V1 might
represent the set of all axisymmetric solutions in a problem with circular symmetry. The
symmetry of the subspace Vj can be determined by the associated isotropy subgroup.

We recall that for a mesh with the symmetry of the dihedral group, Dn, and m rings
along the length, the vector space of displacements is of dimension 6mn. The structure of
the orthogonal linear transformation T will thus be of the form

T ¼ ½T1 T2 T3 . . . TN 
 2 R6mn�6mn; ð8Þ

where Tj ¼ ½ej1; e
j
2; . . . ; e

j
cj

, are ð6mn� cjÞ matrices whose columns are made up of the

orthonormal symmetry-adapted basis vectors for Vj. In particular, the orthogonal matrix
T 2 R6mn�6mn depends on whether n is even or odd. If n is even, T is of the form

T ¼ ½T1 T2 T3 T4 Tð1;1Þ Tð1;2Þ . . . Tð2;1Þ Tð2;2Þ . . . Tð2;pÞ
; p ¼
n� 2

2
: ð9Þ

If n is odd, then

T ¼ ½T1 T2 Tð1;1Þ Tð1;2Þ . . . Tð2;1Þ Tð2;2Þ . . . Tð2;pÞ
; p ¼
n� 1

2
; ð10Þ

where T1–T4 in equation (9) and T1–T2 in equation (10) are associated with the four one-
dimensional irreducible representations and Tð1;1Þ–Tð2;pÞ with the two-dimensional irredu-
cible representations. Moreover, Tð1;kÞ � Tð2;kÞ; k ¼ 1; 2; . . . ; p, i.e., they are equivalent
matrices in terms of their eigenspectrum. The symmetry of the subspaces Vj is given by
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isotropy subgroups gð:Þ associated with the columns of Tj. These are

gðT1Þ ¼ Dn; gðT2Þ ¼ Cn; gðT3Þ ¼ gðT4Þ ¼ Dn=2; ð11Þ

gðTða; jÞÞ ¼ Dgcdðn; jÞ; ða ¼ 1; 2Þ; j ¼
1; . . . ; n�1

2
ðodd nÞ;

1; . . . ; n�2
2

ðeven nÞ:

(
ð12Þ

The operator gcdði; jÞ is the greatest common divisor of i and j. For a more detailed
discussion on the structure of T, the reader is referred to Ikeda and Murota [8].

3.3. SIGNIFICANCE OF THE BLOCK DIAGONALIZATION

The non-zero entries of the stiffness matrix K and the mass matrix M (shown in the
standard basis in Figure 3) are shown in Figure 4 in the symmetry-adapted basis. It is clear
from the block diagonalization that,

(1) The original generalized linear eigenvalue problem is split up into lower dimensional
independent subproblems. For example, the blocks of the stiffness and mass matrices
ð *MM and *KK) in the symmetry-adapted basis are shown in Figure 4. These are seven
independent subproblems of the original generalized eigenvalue problem.

(2) One can determine a priori the size of the lower dimensional matrices. The explicit
formulae for the dimensions of the subproblems are discussed by Ikeda and Murota
[8]. Consider a DN symmetric FE mesh with n circumferential elements and m rings
along the length. The original problem size has 6mn d.o.f. As discussed by Wohlever
[5], if ðn=NÞ and N are even, then the sizes of the four subproblems associated with
the one-dimensional irreducible representations are mð3n=N þ 2Þ, mð3n=N � 2Þ, ð3
mn=NÞ and ð3mn=NÞ, respectively, and the dimension of the p subproblems
associated with the two-dimensional representations is 6mn=N (see section 4 for
examples).

(3) One can determine a priori the number of subproblems which are identical in terms
of their eigenspectrum. Thus, equations (9) and (10) imply that there are p pairs of
equivalent subproblems in the block diagonalization. Thus, only the first p
subproblems need to be analyzed for a complete eigenanalysis of the original
problem (see section 4 for examples).

Moreover, each block reflects part of the symmetry of the original system. Thus, each of
the blocks in the block diagonalized stiffness matrix *KK and mass matrix *MM (equations (11)
Figure 4. Location of the non-zero entries of the assembled stiffness matrix *KK and the consistent mass matrix
*MM in the symmetry-adapted basis.
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and (12)) group together all the vibration modes which possess the symmetry of the
associated isotropy subgroup.

3.4. PSEUDO CODE

The algorithm used for the determination of the natural frequencies and the
corresponding mode shapes is given below. An important computational note is that
most of the work is done in the standard computational basis. The symmetry co-ordinates
are used only in the eigenvalue analysis. Thus, the group theoretic transformation routines
can be appended to any existing FE code to aid in the analysis of symmetric problems.

* Compute the stiffness matrix K and the mass matrix M in the standard basis.
* Compute the transformation matrix Tj.
* Transform *KKj ¼ Tt

jKTj, *MMj ¼ Tt
jMTj.

* Solve *KKj
*FFj ¼ o2

j
*MMj

*FFj in symmetry co-ordinates.
* Transform Fj ¼ Tj

*FFj into standard basis for post-processing.

4. RESULTS AND DISCUSSION

In this section, we present the numerical results of the FEM analysis for several shell
structures. The results compare well with the analytical and experimental values reported
in the literature. The analytical results for simple shell structures depend on an ‘‘inspired
guess’’ of the mode shapes. However, this would be impossible for a complicated assembly
of basic shell structures. The group theoretic approach offers a systematic procedure to
choose an optimal symmetry-adapted basis, as long as it is ensured that the dihedral
symmetry of the problem is imposed on the FE mesh. We illustrate this through the
analysis of a combination structure, a typical pressure vessel, presented as the final
example.

4.1. CYLINDRICAL SHELLS

The results of the FEM analysis on a thin cylindrical shell are presented in Table 1. The
stiffness matrix K and mass matrix M are block diagonalized with the representation of the
group D24. Although there are 48 elements along the circumference which should ideally
be analyzed with the D48 group representation, we have presented the analysis of a reduced
group representation D24 so that we can present the analysis of all the subproblems in the
block diagonalization. Thus there are 27 subproblems with a D48 representation whereas
the D24 representation has 15 subproblems as per equation (9), the first four associated
with the one-dimensional irreducible representations and the next 11 associated with the
two-dimensional irreducible representations (see Appendix A). The first two eigenvalues of
each block are calculated using the Lanczos routine. The mode shapes associated with
these natural frequencies are plotted in Figures 5 and 6. These results are compared with
the analytical solution reported by Soedel [2] in Figure 7(a). We also carried out the same
analysis with the D48 group representation and found no difference in the values of the
eigenvalues (natural frequencies). The natural frequencies are in good agreement with the
analytical solution upto 5–6 circumferential waves. There are only 48 elements along the
circumference in the FEM mesh. The accuracy at higher number of circumferential waves
can be improved by finer discretization along the circumference. For example, we carried
out the analysis with 144 elements along the circumference and a D144 group



Table 1

Free vibration analysis of cylindrical shells

First natural Second natural
Isotropy frequency frequency No. of circumferential

Block no. Block size subgroup 1=2 axial wave 1 axial wave waves

1 88� 88 D24 49 870 51 078 0
2 44� 44 C24 50 000 101 232 0
3 66� 66 D12 63 889 65 857 6
4 66� 66 D12 63 889 65 857 6
5 132� 132 D1 30 866 45 767 1
6 132� 132 D2 17 802 35 912 2
7 132� 132 D3 11 028 27 296 3
8 132� 132 D4 8658 21 441 4
9 132� 132 D1 9625 18 607 5
10 132� 132 D6 12 780 18 771 6
11 132� 132 D1 17 395 21 572 7
12 132� 132 D8 23 308 26 505 8
13 132� 132 D3 30 624 33 289 9
14 132� 132 D2 39 580 41 930 10
15 132� 132 D1 50 516 52 652 11

Note: Geometrical data: radius r ¼ 100 mm, thickness h ¼ 2 mm, length L ¼ 200 mm. Material properties:
E ¼ 20�6� 104 N=mm2, r ¼ 7�85� 10�9 N s2=mm4, m ¼ 0�3. FEM data: no. of circumferential elements ¼ 48,
no. of longitudinal rings ¼ 11, d:o:f ¼ 3168, boundary condition: simply supported. Symmetry group
representation: D24.
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representation and found very good agreement with the analytical result presented by
Soedel [2] even for the mode shape with eight circumferential waves. The analytical value
is 2� 104 rad=s while the value obtained by our FEM analysis was 2�07� 104 rad=s. The
comparison of the results of Soedel [2] at higher discretization of the FEM mesh (144
elements along the circumference) is also shown in Figure 7(b).

It is clear that the block diagonalization reflects the role of symmetry in the
phenomenon of free vibrations of cylindrical shells. The lowest frequency in each block
is associated with a 1=2 axial wave. The next value is associated with a unit axial wave and
so on. The first block captures the axisymmetric solutions, the second block the torsional
mode (i.e., the mode which preserves cyclic symmetry). The number of circumferential
waves increases uniformly from the fifth block onwards (the blocks associated with the
two-dimensional irreducible representations). The lower frequencies of vibrations are
closely spaced together, as observed from the lowest values in blocks 7–10. Also, it is well
known that the number of circumferential waves at the fundamental frequency of the shell
is a function of the shell geometry. To quote Leissa [1], ‘‘There appears to be no simple
rule for determining the spacing of the frequencies as the wave numbers are varied’’. In
contrast to vibrations of beams and plates, the lowest frequencies increase as the number
of axial waves is increased but decrease to a minimum before they increase as the number
of circumferential waves is increased. An explanation for this anomalous behaviour is
given by Kraus [24] and Arnold and Warburton [25] from a consideration of the strain
energy associated with the bending and stretching of the reference surface. They
demonstrated the relative contribution of the two forms of strain energy associated with
the lowest natural frequency of the variational solution. At low circumferential wave
numbers, the bending strain energy is low and stretching strain energy is high. At higher
wave numbers it is just the reverse. This interchange in relative contribution to the total
strain energy with increasing number of circumferential waves is responsible for the
anomalous behaviour in the lowest frequency analysis. Thus, an analysis of the lower



Figure 5. The mode shapes of the cylindrical shell associated with the lowest two natural frequencies of blocks
1 and 2. The first column shows the top view, the second column shows the corresponding front view and the
third column shows an isometric view of each mode shape.
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natural frequencies of the cylindrical shell will require the determination of the vibration
modes with circumferential waves varying from 0 to 6 or 7. There is a neat separation of
these closely spaced vibration modes in the block diagonalization, i.e., these frequencies
fall into different blocks. Also, it is observed that there is a large difference in the value of
the first two frequencies within each block. Thus, the numerical conditioning of the
stiffness matrix has been considerably improved due to the group theoretic block
diagonalization.

From the computational point of view, there is a considerable decrease in problem size.
The size of the original stiffness matrix is 3168� 3168 while the largest block size is only
132� 132. Each block is an independent subproblem of the original generalized
eigenvalue problem. Thus, apart from the huge reduction in the size of the problem
that needs to be solved there is an option of parallel processing due to a group theoretic
analysis.

4.2. SPHERICAL SHELLS

The literature on free vibrations of thin elastic spherical shells is vast. A review and
extensive bibliography is given by Kraus [24] and Leissa [1]. In this section, we compare



Figure 6. The mode shapes of the cylindrical shell associated with the lowest natural frequency of blocks 5–8.
The first column shows the top view, the second column shows the corresponding front view and the third column
shows an isometric view of each mode shape.
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the results of the numerical simulations with the relatively recent analytical results of
Niordson [3]. The author has given complete solutions for axisymmetric and non-
axisymmetric vibrational modes for a shell in the shape of a spherical zone with two
boundaries. The hemispherical shell with a circular cutout is a special case of this general
solution.

The comparison of the FEM numerical simulation results with the analytical results is
given in Table 2. There is excellent agreement between the two in all the cases. The
corresponding mode shapes are shown in Figure 8. The following observations of
Niordson [3] are clearly reflected in the mode shapes of the free vibrations. The bending of
thin shells is confined to a comparatively narrow region at the boundary, the first lower
natural frequency is strongly dependent on the size of the larger opening, and the second
lower natural frequency is more or less determined by the smaller opening.

4.3. CONICAL SHELLS

The free vibration studies on conical shells have also been extensive. A complete chapter
deals with conical shells in the review by Leissa [1, chapter 5]. The cylindrical shell is just a
special case of the conical shell with zero conical angle. In an earlier paper, Grigolyuk [26]



Figure 7. The comparison of the FEM numerical results with the results of Soedel [2]. (a) Results with coarse
discretization (48 circumferential elements). Results from all blocks of the D24 representation are given in Table 1.
(b) Results with finer discretization (144 circumferential elements). Note that the agreement with the results of
Soedel [2] improves significantly at higher circumferential waves. *}}*, Analytical solution (first natural
frequency); *- - -*, FEM solution (first natural frequency); þ}}þ, analytical solution (second natural
frequency); �- - -�, FEM solution (second natural frequency).
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suggested that for purposes of calculations, shells having small conicity can be adequately
represented by circular cylindrical shells with radius equal to the average conical shell
radius. However, subsequent results of researchers have shown that this is not a good
approximation (refer to the results of Platus [27]).

Just as for cylindrical shells, the fundamental frequency of a conical shell does not occur
at n ¼ 0 (i.e., it is not axisymmetric and has a few circumferential waves). We pick the case
of a conical frustum with a clamped-free boundary condition for our numerical results.
This has received much treatment in the literature because of its widespread use in



Table 2

Free vibration analysis of spherical shells

First natural First natural Second natural Second natural
No. of frequency frequency frequency frequency

Circumferential coefficient ‘‘c’’ coefficient ‘‘c’’ coefficient ‘‘c’’ coefficient ‘‘c’’
waves Niordson’s soln. FEM solution Niordson’s soln. FEM solution

2 2�0275 2�029 8�2272 8�248
3 5�7068 5�738 Not available Not available
4 10�8128 10�96 Not available Not available
5 17�1278 17�65 Not available Not available

Note: Geometrical data: radius r ¼ 100 mm, thickness h ¼ 1 mm, cutout angle a ¼ 308. Material properties:
E ¼ 20�6� 104 N=mm2, r ¼ 7�85� 10�9 N s2=mm4, m ¼ 0�3. FEM data: no. of circumferential elements¼ 48,
no. of longitudinal rings¼ 19, d:o:f : ¼ 5472, boundary condition: free–free. Non-dimensional coefficient c ¼
ðor2=hÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rð1þ mÞ=E

p
:
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practical design as loudspeaker cones. The comparison with the numerical and
experimental results of Platus [27] is shown in Figure 9. The agreement is excellent. The
corresponding mode shapes of the first four natural frequencies in the symmetry block
with the lowest natural frequency are shown in Figure 10.

4.4. A COMBINATION STRUCTURE: PRESSURE VESSEL

While the literature is abound with analytical results which give accurate answers for
common shell geometries, a typical engineering structure is usually an assembly of these
basic shell structures. These analytical solutions generally depend on an inspired guess of
the mode shapes. However, a structure as an assembly of basic shell structures will require
an FEM analysis for accurate and reliable results. Here, we consider an assembly of a
conical frustum, a cylindrical body and a hemispherical dished end with a cutout. This
complicated assembly represents a typical pressure vessel. This geometry is efficiently dealt
with by a group theoretic approach to the FEM analysis. We have already demonstrated
the advantages and accuracy of such an approach in the previous three examples. The
essential ingredient is dihedral symmetry, which is preserved in this assembly of the basic
shell structures. Thus, the assembly does not add any further complexity to the problem as
far as the group theoretic approach is concerned.

The results of the complete analysis for the clamped–clamped boundary conditions are
presented in Table 3. The convergence of the values of the first two natural frequencies in a
few blocks (blocks 8, 11 and 15, chosen arbitrarily) with finer FEM meshes is shown in
Figure 11. Similar convergence results were obtained in all the other blocks though the
results have not been presented here to avoid clutter in the figures. As with cylindrical
shells, the lowest fundamental natural frequency decreases with an increase in the number
of circumferential waves to a minimum before increasing again. In this example the
fundamental frequency is in block 9, the block with D5 symmetry, i.e., five circumferential,
waves. The mode shapes of the block with the lowest frequency are shown in Figure 12.
The lowest natural frequency is primarily dependent on the cylindrical structure and the
next natural frequency on the conical structure. It is only in the fourth mode that all the
three-component structures participate.

This problem requires heavy discretization for accurate calculation of the natural
frequencies. Therefore, we take an FEM mesh with 144 elements along the circumference
and 37 rings along the length of the structure. This mesh leads to a problem size of
31 968� 31 968. However, the analysis by a D144 representation leads to a maximum



Figure 8. The mode shapes of the spherical shells associated with the lower natural frequencies of blocks 6–9.
The first column shows the top view, the second column shows the corresponding front view and the third column
shows an isometric view of each mode shape.

Figure 9. The comparison of FEM numerical results for a conical frustum with the experimental and
analytical values reported by Platus. *}}*, Experimental values; *- - - *, analytical solution; þ � � � þ, FEM
solution.
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subproblem size of 222� 222 as shown in Table 3 (this is a reduction in the problem size
by a factor of � 100). We note that though the number of independent subproblems are
considerably more (71 as per equation (9)), only a few of these blocks have to be analyzed
to obtain the lower natural frequencies and the corresponding mode shapes. The results
of the analysis of the first 15 blocks are shown in Table 4. Blocks 1–4 are associated with
one-dimensional group representations and the remaining blocks are associated with



Figure 10. The mode shapes of a conical shell associated with the first four natural frequencies in block 9. The
first column shows the top view, the second column shows the corresponding front view and the third column
shows an isometric view of each mode shape.

Table 3

Free vibration analysis of a pressure vessel

First natural Second natural No. of
Isotropy frequency frequency circumferential

Block no. Block size subgroup 1=2 axial wave 1 axial wave waves

1 148� 148 D144 21 797 43 931 0
2 74� 74 C144 22 725 62 994 0
3 148� 148 D72 496 860 526 892 6
4 74� 74 D72 503 348 520 671 6
5 222� 222 D1 22 214 34 219 1
6 222� 222 D2 20 270 33 860 2
7 222� 222 D3 17 328 28 274 3
8 222� 222 D4 14 924 25 839 4
9 222� 222 D1 14 176 26 512 5

10 222� 222 D6 15 426 29 678 6
11 222� 222 D1 18 358 31 309 7
12 222� 222 D8 22 520 33 641 8
13 222� 222 D3 27 635 37 380 9
14 222� 222 D2 33 566 42 327 10
15 222� 222 D1 40 256 48 320 11

Note: Cone dimensions: cone angle b ¼ 458, thickness h ¼ 2 mm, length L ¼ 50 mm. Cylinder dimensions:
radius r ¼ 100 mm, thickness h ¼ 2 mm, length L ¼ 200 mm. Hemisphere dimensions: radius r ¼ 100 mm,
thickness h ¼ 1 mm, cutout angle a ¼ 308. Material properties: E ¼ 20�6� 104 N=mm2, r ¼ 7�85�
10�9 N s2=mm4, m ¼ 0�3. FEM data: no. of circumferential elements¼ 144, no. of longitudinal rings¼ 37,
d:o:f : ¼ 31968, boundary condition: clamped–clamped. Symmetry group representation: D144.
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Figure 11. The convergence of the values of the natural frequencies with finer discretization of the FEM mesh
in the free vibration analysis of the pressure vessel (a) shows the convergence of the values of the first natural
frequency and figure (b) shows the convergence of the values of the second natural frequency. *}}*, Block 8 (4
circumferential waves); *- - -*, Block 11 (7 circumferential waves); þ}}þ, Block 15 (11 circumferential waves).
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two-dimensional group representations. It is clear that block 1 is associated with the
axisymmetric vibration mode shape (with low natural frequencies) and blocks 2–4 are
associated non-axisymmetric mode shapes (with higher natural frequencies). After block 1,
we need to look at only a few blocks from block 5 onwards because these blocks capture
mode shapes with increasing number of circumferential waves.

5. COMPUTATIONAL COST ANALYSIS

The computational efficiency of the group theoretic approach can perhaps be measured
by noting the floating point operations (flops) and the CPU time during actual program



Table 4

Computational savings in CPU time and flop count

Dn 8 16 32 64 128
symmetry group

Size of K and M 528 1056 2112 4224 8448
N �N
Size of *KKj and *MMj 66 66 66 66 66
Nj �Nj

Eigenanalysis Ku ¼ o2Mu 44 120 680 1330 3800
Mega flops
Assembly of T 0�08 0�22 0�34 0�86 1�75
Similarity transformation *KKj ¼ Tt

jKTj

and *MMj ¼ Tt
jMTj

Mega flops
Block eigenanalysis *KKju ¼ o2 *MMju 1�65 1�65 1�7 1�7 1�7
Mega flops
Normalized flopsy 5�2 12�8 64�7 103�5 217�1
Eigenanalysis Ku ¼ o2Mu 16�8 41�8 194�2 399�3 1052
CPU time (s)
Assembly of T 0�04 0�08 0�16 0�32 1�03
Similarity transformation *KKj ¼ Tt

jKTj

and *MMj ¼ Tt
jMTj

CPU time (s)
Block eigenanalysis *KKju ¼ o2 *MMju 0�65 0�66 0�65 0�63 0�66
CPU time (s)
Speed up timey 4�9 11�3 48 81�5 124�5

yThe CPU time/flop count for solving the generalized eigenvalue problem for the five lowest eigenvalues and
the corresponding eigenvectors is compared with the CPU time/flop count to solve a single subproblem for a
single lowest eigenvalue and corresponding eigenvector. The speed up time/normalized flops is the ratio of these
timings divided by five (since five such subproblems have to be solved to determine the five lowest eigenvalues and
corresponding eigenvectors). It is to be noted that the time/flops for assembling the similarity transformation
matrix T and the similarity transformation matrix multiplication is included in the computational effort for
solving the subproblem.
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execution and compared with the corresponding values for the standard method. The
results of a few simulations are presented in Table 4. All the computations discussed in this
section were carried out on an IBM RISC/6000 machine. The codes were written in
MATLAB,z however, most of the significant computational work, such as assembling the
stiffness matrix K and the orthogonal transformation matrices Tj, was done using
compiled Fortran MEX-files. The computation of the blocks in the identical block
diagonalization of the mass matrix M and the stiffness matrix K, i.e., the matrix
multiplication associated with the similarity transformations *KKj ¼ Tt

jKTj and
*MMj ¼ Tt

jMTj, was carried out with the use of MATLAB’s sparse multiplication
capabilities.

The fully assembled symmetric stiffness matrix K and symmetric mass matrix M are
stored in MATLAB’s sparse storage format, i.e., only non-zero components and their
indices are stored. The flop count and CPU timings for this step have not been shown in
the comparison tables because this computation is required in both the standard and the
group theoretic approach. The generalized eigenvalue problem is solved using MATLAB’s
EIGS function which finds a few eigenvalues and eigenvectors (we calculated the five
zMATLAB is a registered trademark of the MathWorks, Inc.



Figure 12. The mode shapes of a combination structure associated with the lower four frequencies in block 9.

S. J. MOHANAND R. PRATAP334
lowest eigenvalues and associated eigenvectors) given a specified tolerance norm. The
EIGS function utilizes the Fortran MEX-files of the ARPACK} routines which are
Fortran programs for large size eigenvalue problems. The flop counts for five different
problem sizes are shown in Table 4. The log-log plot in Figure 13 of the flop count against
the problem size suggests that the computational cost of the given eigenvalue problem with
sparse symmetric banded matrices is approximately OðN1�6Þ. Here, N is the size of the
stiffness matrix K and mass matrix M. The subproblem size of each block in the block
diagonalization is constant. The flop count of the subeigenvalue problem includes the cost
of assembling the orthogonal transformation matrix Tj and the similarity transformation
matrix multiplications *KKj ¼ Tt

jKTj and *MMj ¼ Tt
jMTj. As discussed by Wohlever [5], there

is a good deal of sparsity, repeated data and block diagonal structure in the orthogonal
matrix Tj. The matrices require relatively little memory when stored in the sparse format
and lead to very efficient co-ordinate transformations. The normalized flop ratio is the
ratio of the flop counts divided by five since five subproblems of similar size have to be
solved to obtain the five lowest eigenvalues and eigenvectors of the given problem.
However, it is to be noted that the group theoretic approach leads to independent
subproblems which can be parallelly solved with availability of resources. As expected, the
computational gain increases with increase in symmetry and varies from a factor of 5 for a
problem with D8 symmetry to around 200 for a problem with D64 symmetry (i.e., 64
elements along the circumference). The actual CPU timings are shown in Table 4. While
the CPU time ratio is more modest compared to the flop count ratio, it is clear that the
}ARPACK routines available on http://www.caam.rice.edu/software/arpack/



Figure 13. The log-log plot and the least square linear fit to determine exponential dependence of the
computational effort of the generalized eigenvalue problem on the problem size. Here, N is the size of the square
matrices K and M. The flop count is the number of floating point operations for the computation of the five
lowest eigenvalues and the corresponding eigenvectors.
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group theoretic approach offers significant computational savings in FEM analysis of
problems with symmetry.

Wohlever [5] has discussed the computational savings in the solution of a linear system
of equations Ku ¼ f in symmetry co-ordinates which arises in the static buckling problem
of a cylinder. The presence of the minimum amount of symmetry, i.e., D1 symmetry, leads
to a decrease in CPU time by a factor of 2�5 as compared to the time required to solve the
full problem in standard computational co-ordinates. A typical symmetry group for large
problems could be D64. This reduces CPU time by a factor of 100. For the problem of
vibrations of shells with dihedral symmetry, we note that the representation of Dn on a
mesh with m rings and n circumferential elements results in 4þ pþ p blocks in the block
diagonalization, where p ¼ ðn� 2Þ=2. Thus if n ¼ 100 there are 4þ 49þ 49 blocks where
the first 49 blocks are identical to the next 49 blocks in eigenstructure. As per the
discussions in section 4, only a few of these blocks (6 to 7 of the 49 blocks) need to be
analyzed in the search for the first few natural frequencies (i.e., those with mode shapes of
0–6 or 7 circumferential waves). The subproblem sizes decrease by an order of 100 (D100

representation). Since eigenvalue computations are generally of OðN3Þ, there are
significant savings in computational effort.

6. CONCLUSIONS

In this paper, we have dealt with linear free vibrations of shells with dihedral symmetry.
It is clear from the analyses and results discussed in this work that the group theoretic
approach offers significant advantages for the linear free vibration analysis.

The group theoretic approach neatly separates out the analysis into physically
meaningful subproblems. The vibrations of shells typically result in circumferential and
longitudinal waves. The dihedral symmetry increases with the increase in the number of
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circumferential waves. The same symmetry is reflected in the isotropy subgroups associated
with the subproblems in the block diagonalization. A priori guesswork based on the
geometry and the boundary conditions is not required. As a result, a large class of
problems can be handled efficiently by a standard FEM code supplemented by group
theoretic transformation routines. The class of practical problems of interest include shells
with circumferential stiffeners and corrugated shells in addition to the examples discussed
in this work. However, it should be ensured that the symmetry of the problem is imposed
on the mesh.

The computational cost reduces dramatically due to the group theoretic approach
because the original problem is split into independent subproblems in the block
diagonalization. The block diagonalization leads to independent subproblems which
retain the symmetry and band structure. The actual CPU timings and flop counts of
numerical simulations shown in Table 4 suggest that these computational savings can be
significant.

We also note that the group theoretic approach is useful for a linear transient response
analysis. Linear transient response analysis under dynamic loads permit mode super-
position techniques. The symmetry-adapted basis reduces the problem size just as in free
vibration analysis. It is also useful in the identification of dominant modes of vibration to
be used as the basis for the response of the structure.

The terms including the effect of shear deformation and rotary inertia are generally
considered as complicating factors in free vibration analysis of shells. Neglecting shear
deformation and rotary inertia is generally a very good approximation. The effects are
significant only for short thick shells or when the number of circumferential and
longitudinal waves are large, i.e., at higher frequencies. However, the terms involving the
shear deformation and rotary inertia are included in the Simo element FEM shell
equilibrium equations and are block diagonalized in the symmetry-adapted basis.
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APPENDIX A: THE GROUP THEORETIC APPROACH TO THE SOLUTION

OF THE GENERALIZED LINEAR EIGENVALUE PROBLEM

The central ideas and theorems of group theory leading to equation (2) are outlined
here. The details are given in many excellent texts, cf. books by Miller [28] or by F.aassler
and Stiefel [29]. The explicit formulae and the algorithm for the construction of the
orthogonal transformation matrix, T, and the analysis of the associated computational
complexity is discussed by Murota and Ikeda [8]. These formulae are applicable for trusses
with dihedral symmetry. The modification of these formulae for the analysis of the
discretized finite element shells equations is discussed by Wohlever [5]. The discussion on
the identical block diagonalization of the stiffness matrix K and the mass matrix M (see
Appendix A.3) is reproduced from the paper by Healey and Treacy [6].

A.1. SOME BASIC RESULTS FROM GROUP THEORY

Let G be a finite group, whose order is denoted by jGj and V a finite-dimensional vector
space. Let GLðVÞ be the group of all non-singular linear transformations of V onto itself.

Definition 1. A representation of G on V is a homomorphism H :G ! GLðVÞ, i.e.,

HðghÞ ¼ HðgÞHðhÞ; 8g; h 2 G: ðA:1Þ

V is the representation space and n ¼ dimðVÞ, the dimension of the group representation.
The linear transformations HðgÞ can be associated with the n� n non-singular matrices on
fixing a basis for V .

Definition 2. Two matrix group representations of G; H1 and H2 are said to be equivalent
if there exists a non-singular matrix B such that

H1ðgÞ ¼ B�1H2ðgÞB; 8g 2 G: ðA:2Þ

A subspace W of V is said to be G invariant if HðgÞw 2 W 8w 2 W and 8g 2 G.

Definition 3. A representation, H of G on V , is said to be irreducible if there exists no non-
trivial subspace W (i.e., W can only be f0g or V).

Definition 4. A representation, H of G on V , is said to be completely reducible if every
invariant subspace W � V has an invariant complement U. This implies V ¼ W �U.

In such a case, we say that the representation H reduces to irreducible representations
H1; . . . ;HN on vector spaces V1; . . . ;VN , respectively, such that V ¼ V1 � � � � � VN . In
order to express the reduction of the representationH into the representations H1; . . . ;HN ,
we write H ¼ H1 � � � � �HN .

Theorem 5. A finite group G of order jGj has only a finite number of inequivalent irreducible
representations Hj . We denote the dimension of Hj by nj.

The important groups for our applications are the dihedral groups. The rotational and
reflection symmetries of a regular polygon of n sides form the dihedral group Dn of order
2n. Dn ¼ f1; r; . . . ; rn�1; s; sr; . . . ; srn�1g, where rn ¼ s2 ¼ ðsrÞ2 ¼ 1. The group elements r
and s are the generators of the group.
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There are N non-equivalent irreducible representations which can be indexed as

RðDnÞ ¼ fð1; jÞ j j ¼ 1; 2; 3; 4g [ fð2; jÞ j j ¼ 1; . . . ; ðn� 2Þ=2g for n even;

RðDnÞ ¼ fð1; jÞ j j ¼ 1; 2g [ fð2; jÞ j j ¼ 1; . . . ; ðn� 1Þ=2g for n odd;

where the first component d of the index N ¼ ðd; jÞ indicates the dimension of the
representation.

The one-dimensional irreducible representations Hð1; jÞ of Dn are given by

Hð1;1ÞðrÞ ¼ 1; Hð1;1ÞðsÞ ¼ 1;

Hð1;2ÞðrÞ ¼ 1; Hð1;2ÞðsÞ ¼ �1;

Hð1;3ÞðrÞ ¼ �1; Hð1;3ÞðsÞ ¼ 1;

Hð1;4ÞðrÞ ¼ �1; Hð1;4ÞðsÞ ¼ �1:

The two-dimensional irreducible representations Hð2; jÞ of Dn are given by

Hð2;jÞðrÞ ¼ Rj ; Hð2; jÞðsÞ ¼ S;

where

R ¼
cosð2p=nÞ �sinð2p=nÞ

sinð2p=nÞ cosð2p=nÞ

 !
; S ¼

1 0

0 �1

 !
:

We note that the representations are by 1� 1 and 2� 2 orthogonal matrices.

Theorem 6. Every orthogonal representation H is completely reducible.
Thus, any representation H of a group G on an n-dimensional vector space V by

orthogonal matrices is completely reducible and is given by

H ¼ c1H1 � c2H2 � � � � � cnHn; ðA:3Þ

where the Hj are irreducible and mutually inequivalent representations of G. The numbers
cj 2 f1; 2; 3; . . .g indicate the multiplicity. Let nj be the dimension of Hj. Accordingly, the
representation vector space V of H decomposes into

V ¼ V1 � V2 � � � � � Vn: ðA:4Þ

This is called the isotypic decomposition of V and is uniquely determined as are the
multiplicities cj. However, the decomposition of an isotypic component Vj into cj number
of nj-dimensional irreducible subspaces is, in general, not unique. A particular choice is
useful for applications. This is the substance of the fundamental theorem for group
theoretic applications.

A.2. THE FUNDAMENTAL THEOREM

Definition 7. Let L be a linear operator, mapping an n-dimensional vector space V into
itself. L has the symmetry of the group representation H of the group G if it commutes
with every representing matrix, i.e.,

LHðgÞ ¼ HðgÞL 8g 2 G:
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Theorem 8. Let H : g ! HðgÞ be an n-dimensional completely reducible representation of a
group G. Let the complete reduction be given by

H ¼ c1H1 � c2H2 � � � � � cnHn; ðA:5Þ

where Hj are the irreducible and mutually inequivalent representations of G. The numbers
cj 2 f1; 2; 3; . . .g indicate the multiplicity and nj the dimension of Hj. Then there exists a basis
of the isotypic subspaces Vj in which a symmetric linear operator L decomposes into a direct
sum of

n1 identical square matrices L1 of length c1

n2 identical square matrices L2 of length c2

..

.

nN identical square matrices LN of length cN :

This is the block diagonalization of the linear operator L.

A.3. THE IDENTICAL BLOCK DIAGONALIZATION OF THE STIFFNESS MATRIX K AND MASS

MATRIX M

Let the total energy of a symmetric linear structure under free vibrations be E. Thus, E
is the sum of the kinetic and potential energies.

Eð’uu; uÞ ¼ 1
2
ð’uutM’uuþ utKuÞ: ðA:6Þ

Here, u and ’uu are displacement and velocity vectors. Symmetric structures enjoy special
properties. Some of these are characterized mathematically in terms of transformations
upon the energy. The orthogonal group representing matrices HðgÞ g 2 G are linear
transformations of the displacement vector field that leave the total energy invariant, i.e.,

EðHðgÞ’uu;HðgÞuÞ ¼ Eð’uu; uÞ; 8g 2 G: ðA:7Þ

More generally, equation (A.6) represents the total energy of an n-d.o.f. system, for
which the symmetry is characterized by some group, say G. We note that equation (A.7) is
valid for all possible displacements and velocities. On differentiating both sides of equation
(A.7) with respect to u and ’uu, respectively, we deduce that

MHðgÞ ¼ HðgÞM and KHðgÞ ¼ HðgÞK; for 8g 2 G: ðA:8Þ

Thus, M and K each commute with the entire family of transformations of the
group representation H. Therefore, the fundamental theorem asserts that there is a
symmetry-adapted basis of the vector space V in which symmetric linear operators M and
K are block diagonalized.

A.4. SIGNIFICANCE OF THE BLOCK DIAGONALIZATION

It is clear from the fundamental theorem that
(1) A problem defined by symmetric operators is split up into lower dimensional

independent subproblems.
(2) One can determine a priori the size of the lower dimensional matrices.
(3) One can determine a priori the number of subproblems which are identical in nature.

Moreover, each subspace Vj of the isotypic decomposition reflects part of the symmetry of
the original system. This leads to physical insights unique to the group theoretic approach.
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Definition 9. A subgroup SG0 � G is an isotropy subgroup associated with a vector space
V if the orthogonal representation matrices of SG0; Hðg0Þ for g0 2 SG0, leave every vector
in the vector space invariant, i.e., Hðg0Þu ¼ u; 8u 2 V , and 8g0 2 SG0.

The isotropy subgroups associated with the dihedral group are discussed by Mutota and
Ikeda [8]. The subspace V1 is typically designated as the G-invariant subspace which
implies that the elements of V1 reflect the symmetry of the complete group G. For example,
V1 might represent the set of all axisymmetric solutions in a problem with circular
symmetry. The isotropy subgroups SG0ðVjÞ associated with the subspace Vj are as follows:

SG0ðV1Þ ¼ Dn; SG0ðV2Þ ¼ Cn; SG0ðV3Þ ¼ SG0ðV4Þ ¼ Dn=2; ðA:9Þ

SG0ðV4þjÞ ¼ Dgcdðn; jÞ; j ¼ 1; . . .
n� 1

2
: ðA:10Þ

The operator gcdðn; jÞ is the greatest common divisor of n and j. Thus each of the blocks in
the block diagonalization of the stiffness matrix K and mass matrix M (equation (A.10))
group together all the vibration modes which possess the symmetry of the associated
isotropy subgroup.
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